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Absiract  In Schreider, et al. (1997a), the JHACRES rainfail-runoff model is calibrated for the purpose of predicting
streamflow discharge in ten catchments of the Upper Murray Basin, using a four hourly time step. A map of the basin and list
of the catchments considered are presented in Figure i and Table 1 in Schreider, ef al. (1997a). The major aim of the presen
paper is to deseribe the subsequent development and testing of a four houtly time step, flow forecasting model whick exploits
the Kaiman Filter (KF) algoritim to upgrade the IHACRES models from a simple predictive to a real-time forecasting
capabitity. In Schreider er al. (1997b), the [HACRES model and a self adaptive filiering approach, based on the Auto-
Regressive Integrated Moving Average (ARIMA) representation of the model residuals, were combined and ufilised for
forecasting daily streamflow in nine catchments of the Upper Murray Basin, Such linear filtering of the model residuals
provided a considerable improvement in forecasting both low and high values of streamflow. A KF forecasting algorithm,
incorporating the sub-daily Upper Murray Basin IHACRES model, has been used in this second stage of the project as a tool
for operational streamfiow forecasting because it provides a more flexible approach and yields even better results (in terms of
Nash-Sutciiffe efficiency statistics and relative errors) than the ARIMA linear filtering approach.

i. INTRODUCTION climatic input and the hydrological/ geomorphological
parameters, measured during some period, and the
In the almost forty years since Kalman {1960) first derived streamflow output for the same period of time. This then
his famous fiitering algorithm, it has been applied in many aliows either for the generation of streamflow during the
different areas of science and social science and there are same period {fitting), or over another period using the
myriads of publications devoted to its application in the relevant climatic inputs and model parameters
field of hydrology. Thus, a comprehensive review of such {simulation). The term "forecasting' is employed to describe
work is beyond the scope of this paper. The Kalman Filter aigorithms which allow for the real-time, mubti-step-ahead
{(KF) algorithm used here is fornulated in the predictive- forecasting of streamflow values into the future, with the
corrective form (e.g. Young 1684 and the earlier estimates of streamflow and other associated ‘state-
references  therein} which underlies the general variables' updated at regular intervals. This methodology,
Lnobserved Component approach to state space estimation in various forms, is widely used in hydrology for
and forecasting (Young, 1988, 1989, 1991; Young ef al operational  sgeamflow  forecasting. In  ‘adaptive
1998), The well known monograph by Bras and forecasting', the mode! parameters are also updated
Rodriguez-lturbe (1985) contains an overview of the KF recursively to ensure that the underlying model is
and other statistical techniques in hydrology (see also the calibrated on the latest data (see e.g. Lees ef al, 1994).
papers of Young and Wallis, 1985; and Young, 1936); Such statistical forecasting algorithms are normatly based,
while an inventory of recent hydrological applications of as in this paper, on different forms of the KF; or on
the KF, especially for streamflow forecasting, can be found modifications of the AutoRegressive Integrated Moving
in Sen (19%1), where the KF method is also applied for the Average (ARIMA) approach of Box and Jenkins (1970;
prediction of monthly flow for two catchments in Turkey see also Bras and Reodriguez-lturbe, 1985). Some
and the USA; and for monthly rainfall prediction in Saudi publications on previous uses of the KF are discussed in
Arabia. the next sub-section.
1.1 Prediction Yersus Forecasting 1.2 Previous KF Based Algorithms
The KF methodology applied in the current work is based One form of the KF technique is used in the European
on the separation of two steps: simulation, or simple Flood Forecasting Operational Real-Time System
prediction; and multi-step abead forecasting. Here, the (EFFORTS), widely applied for -water resource
term 'prediction’ is used for modelling exercises which management in Europe and elsewhere (Todini, 1996).
follow the establishment of relationships between the Here, the predictive part of the aigerithm is based on the
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conceptual rainfall-runoff model ARNO. The forecasting
part is based on two linear, interactive KF's, one in state
vector space and another in the parameter space.
Dimopoulos ef af. (1996) have developed a streamfiow
forecasting method based on the combination of a neural
network model and KF techniques. The neural network
algorithm is used as a simple predictive {or simuiation)
part of the algorithm, taking into account the non-
linearities of the relationship between input rainfaii and the
output runoff; whereas the KF is applied for real-time
correction of the predictive model residuals. The algorithm
has been applied to two catchments in France using weekly
and daily time steps, yielding Nash-Sutcliffe efficiency of
about 0.800 in both cases. Bidwell and Griffiths (1994)
describe an algorithm somewhat similar to the one
described in the present paper: for the predictive step, they
use a first order transfer function (TF) mode! with a time
step of one hour and adaptive coefficients, in order to
establish a f{orecasting relationship betweern modelled
streamflow output and antecedent values of the modelled
streamflow and measured input. The precipitation and
measured upstream flow time series are used as model
inputs and the TF model parameters are estimated initially
using the recursive [V algorithm (see e.g. Young, 1984).
The KF algorithm (effectively time variable parameter,
recursive least squares) is then used for updating the TF
parameters in order to provide real-time, 4 howr ahead
forecasting on the Waimakiriri River in New Zealand. The
algorithn is tested for four flood events and yields
relatively low errors.

In the present paper, the predictive-corrective version of
the KF algorithm is used for rea time forecasting, based on
the IHACRES model. Here, the predictive step utilises the
linear module of IHACRES, with the effective rainfali
input obtained from the nonlinear module; and the
corrective  step adjusts the streamflow estimate by
reference to the 'innovation' error between the prediction
ard  the streamflow measurements. An  important
advamtage of the KF algorithm used in this manner is that
any missing measurements of streamflow do not interrupt
the algorithmic implementation, since inherent model-
based interpolations within the KF allow for continuation
of the forecasting process without interruption.

2. DESCRIPTION OF THE KALMAN FILTER
FORECASTING ALGORITHM

Since the two-reservoir structure of the IHACRES linear
maodule {Jakeman er af., 1990; jakeman and Hornberger,
1993} involves paralie] processes (see also Young, 1992),
it can be formulated in the following state-space form:

(k)= A x(l-1) + b ufk-d) + £(K) (1)

y{l) = Cxik) + e(k) (2)
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where u(k) is effective rainfall input; x(k) = {x%, x)7 is the
state vector representing the outputs of the ‘quick’ and
‘stow’ reservoirs; y(k) is the measured streamflow {the
output measurement); C is the 2x1 output or observation
row vector C=[1 1} E(k) is a white noise vector with
covariance matrix Q; and e(k) is white measurement noise,
with variance o®. Finally, the IHACRES model parameters
8 &, b, , b, and d, define the 2x2 diagonal state transition
matrix A, with the parameters a_ and a, on its diagonal; the
vector b=[b,, b,};and & is the integer time delay.

The particular structure of the KF algorithm used in the
present work is a recursive procedure consisting of two
steps per recursion: prediction and correciion. The
prediction step utilises the above state-space representation
(1) of the IHACRES model to predict the state variables
for one sample ahead; and the correction step compares
this prediction with the measured streamflow at the next
sample and utilises this 'innovation error’ fo update the
previous state estimate,

The prediction step is as follows:

xh{klk-1}= A xh(k) + b u(k-d) {3}

Pkik-1)=ATPk-1) A+ Q/c? 4

yhik) = C xh(klk-1) (5)
The correction step is then:

Gk = (1 + C P(kk-1) O (6)

xb(k) = xh(klk-1) + [ P(kik-1) €7 GO} {y(k) - yh(O} (D)

P(k) = P(kik-1) - Ptkik-1) CF Gk € Pkik-1) (83
In the above, xh(k) is the state vectar; {y(k) - vh{l}} is
the innovation error; P(k) is the normalised covariance
matrix, cov(xh(k}-x(k))¥/c*; and the two diagonal
elements of /o, the Noise Variance Ratic (NVR)
matrix, are the unknown ‘hyper-parameters' to be
optimised by manual tuning or numerical optimisation
(see e.g. Young, 1988, 1994, Young er al., 1989, 1991,
and the references therein). ¥ an » time step ahead
forecast is required, then the correction step is simply
omitied » times.

3. COMPARATIVE RESULTS OF THE ARIMA AND
KF FORECASTING FOR A DAILY TIME STEP

Comparative analysis of the streamflow forecasting using
the KF and ARIMA (se¢ earlier) methods was carried out
for nine catchments of the Upper Murray Basin modelled
using a daily time step. {These nine catchments are the



same as those used for the 4-hourly modelling except

Corryong Creek is missing). The efficiency stafistics
estimated for the whole period when data are available are

summarised in Table 1, which illustrates that the resuits
produced by the KF approach are consistently better than
the ones provided by the ARIMA method,

Table 1: Efficiency statistics (£) for 9 catchments of the Upper Murray Basin. Results are for IHACRES alone compared

with ITHACRES combined with an AR

A algorithm, and IHACRES with KF,

Station River and station location [HACRES model applied IHACRES modei combined Kalman flter estimate
number salely with ARIMA (1,0,0) incorporating IHACRES
E E E

401203 Mita-Mitta River at Hinnomunjie 0.669 0.835 0.850

401220 Tallangatta Creek at McCallums a.611 0.807 0.896

401229 (Cudgewa Creek at Berringama .638 0.744 0.782

401012 Murray River at Biggara 0.64% 0.835 0911

401217 Gribbo River at Gibbe 0.692 0.805 0917

401210 Spowy Creek at  Granite Fiat 07289 0.80G 0.941

401013 Jingellic Creek at Jingeilic 0.533 0.602 0.657

401014 Tooma River at Pine Grove 0.664 0.841 0.866

401218 Big River U/S of Joker Ck 0.769 0.845 0.891

4. RESULTS OF KF FORECASTING FOR THE 4-
HOURLY TIME STEP

A simulation test {sometimes termed validation) for the
THACRES model was carried for all ten caichments
considered. Here, the values of all six parameters of the
IHACRES model, optimised during the calibration runs,
were used for modeliing the streamfiow, based on inputs

of the associated rainfall and femperature series. The
results of this simulation test for the ITHACRES model
using & 4-hour time step, as shown in Table 2, reveal that
the performance of the model, taken alone, is much worse
than that of the model calibrated on the daily time step
{Schreider et al., 1997), where the efficiency statistic is
consistently higher than 0.600. On the other hand, when
this 4-hour time step model is integrated with the KF
forecasting algorithm, as described above, it yields higher

Table 2: Efficiency E and absolute relative errors ARE for [HACRES alone compared with the KF estimate and 3-day ahead
forecast for 10 catchments of the Upper Murray Basin.

Statien number Time delay E and ARE for HHACRES E and ARE for KF E and ARE for 3 day ahead forecast
401203 2 0152 0.936 0.684
5% 4.5% 11.5%
401230 2 -0.060 0.964 0.846
0% 5.3% 15%
404220 | 0776 0.934 0.87¢
62% 9% 20%
401229 2 -1.350 0.857 0.563
87% 9.5% 21%
401012 2 0.260 0.967 0.856
55% 4% i1%
401217 i G.256 0.981 (.508
62% 3.6% 9%
401210 2 0.435 0.932 0.813
61% 6% 12%
401013 1 0.333 (.852 0.633
100% 10% 25%
40014 2 0.843 0915 0.761
130% 1% 10%
404216 0 0410 0.839 0.690
13% 5.5% 12%
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values of the efficiency £ combined with lower relative
ITors.

It should be noted here that the Snowy Creek catchment
was  modelled with and without the snow
melt/accumulation module (see Schreider, er af., 1997a).
The KF forecasting algorithm was applied for both cases
and it vields an efficiency slightly higher for the case when
the snow melt/accumulation module was appligd (£ =
0.241) than without this module (0.932). However, since
the relative errors were 14% and 6%, respectively, for
these two approaches, the application of the snow
melé/accumulation module provides litle advantage for
forecasting high flow events (the Nash-Sutcliffe efficiency
is more sensitive to high absolute errors) and it is a
disadvantage for forecasting the medium and low events.
The resuits for the 3 time step (12 hours) ahead forecast
vield efficiencies are 0.774 and 0.813, and relative errors
are 38% and 12% for the modelling with and without snow
melt/accumulation module, respectively. Although all
these results suggests that the snow melt/accumulation
module should not be included for the pumposes of
operational  streamflow forecasting, it is too soon fo reach
any firm conclusions in this regard.

Figures | and 2 present the resulis of the KF algorithm
applied to  the Tooma River and Corryong Creek
catchinents. They were selected as examples of catchments
with very different properties: the Tooma River has a
large (1,819 km®) snow-affected catchment; and Corryong
Creek has relatively small (387 km?) snow-free catchment.
Figures 3 and 4 show the results from the KF algorithm for
the Upper Murray and Gibbo catchments with higher
temporal resolution (zoom display over a shorter period),
for the cases of low and high flow events. Note that figure
4a demonstrates how the KF algorithm works during a
period when no precipitation is recorded.
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Figure b: Results of Kalman filter forecasting for the
Tooma River catchment.
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Figure 2: Results of Kalman filtering forecasting for the
Corryong Creek catchment.

5. DISCUSSION

Previously, the conceptual rainfall-runoff modet
IHACRES has been successfully calibrated for ten
catchments in the Upper Murray Basin using z 4-hourly
time step for input and output time series (Schreider er af.,
1997a). In the present study, a KF based forecasting
algorithm has been developed for streamflow forecasting
using this calibrated IHACRES model as the underlying
prediction technique. This algorithm yields high values of
the efficiency statistics {from 0.839 to 0.967) and low
relative errors (from 4% to 11%} over the whole period of
observation for each of the ten catchmenis considered. The
algorithm has also been implemented for the case of 12
hour ahead forecasts and it produces consistently high
efficiency values. Finally, when compared with the
ARIMA-based forecasting algorithm, using a daily
sampling interval, the KF techmique i3 consistently
superior for nine of the catchments in the Upper Murray
Basin.

An impottant advantage of the KF aigorithm proposed
here is that missing inputs of streamflow do not interrupt
the data processing. Another advantage is that information
about the climatic data (temperature and precipitation) is
required at only 8-12 hours prior to the forecast time. This
is achieved by calibrating the [HACRES madel for almost
all catchments with a convenient 4-8 hours time delay
(Table 2), which follows the approach used by Lees er of
{1994). The Big River catchment is an exception, but this
is not crucially important because it is a tributary of the
Mitta-Mitta River and is not used, therefore, for practical
forecasting of flow into the Dartmouth Lake inlet,



Another, related advantage of the KF algorithm applied on
the 4-hourly time step is that, if the model is calibrated
with a time delay d of | time step, then the KF provides the
one-step-ahead prediction directly, without the need for
multi-step forecasting (Ses equations 3-5). All of the
Upper Murray Basin catchments are calibrated with such a
delay {except the Big River catchment, which is a tributary
of the Mitta-Mitta River upstream of its gauging station),
Finaily, the weil known robustness of the KF algorithm
allows one to use the THACRES predictive model
parameters estimated using 'regiomalisation' principies
when streamflow time series are not available for model
calibration.  Regionalisation assumes that the model
parameters are @ function of the landscape and vegetation
characteristics of a catchment. For the Mitta-Mitta and
Tooma Rivers, the IHACRES parameters were taken from
the calibration results obtained for the Big River
catchments. Although the KF estimate for the Tooma
River is the worst in the Basin, in terms of relative error,
the estimate obtained for the Mitta-Mitta catchment is
comparable with other catchments. This is explained by
the higher geomorphologic similarity between the Big
River and Mitta-Mitta catchments (the Big River is a
tributary of Mitta-Mitta}, than that between the Big and
Toa%ma catchments,
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Figure 3: Results of Kalman filter forecasting for the
Upper Murray River catchment: (a) low and (b) high flow
periods.
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6. ALGORITHMIC IMPROVEMENTS

The proposed KF-based forecasting algorithm for the
Upper Murray Basin can be improved in various ways.
Firstly, the rainfail data used at present are recorded in the
lowest parts for the catchments, at the site of stream
gauging stations. At the same time, the climatic conditions
in the region under study are very heterogeneous: mean
annual precipitation can double from the lowest to the
highest elevations in some catchments, especially in large
ones like those of the Tooma, Mitta-Mitta and Upper
Murray rivers. Therefore, for many peak flow events, the
corresponding rainfall is not recorded at the gauging site.
Another similar problem is that maximum rainfall intensity
may be located in different parts of the catchments, so that
the time defay between a rainfall event and the streamilow
response can vary in large catchments from G to 20 hours,
50 that the time delay d presentad in Table 2 reflects just an
average value for this characteristic. Use of a relevant
spatial interpolation procedure and data for precipitation
over the whole catchment (or weather radar) is a possible
solution to this problem, but this has not been considered
during the present stage of this work because of the lack of
suitable precipitation measurements.



Secondly, the basic assumption of the KF algorithm is that
the streamflow data used in the correction step are free of
systematic error; or, in other words, the stochastic inputs
e(ky and Eik) are composed of zero mean, serially
uncorrelated sequences of random variables {white noise}.
In actuality, however, these inputs are significantly
celoured: for instance, e(k) can have a periodic component
induced by the sensitivity of the gauging instruments to the
daily fluctuations of temperature. More efficient (lower
variance) estimation and forecasting will clearly result,
therefore, if additional stochastic states are introduced into
the model to account for these coloured noise input effects.

Thirdly, the iHACRES model itself has a systematic bias
in these catchments, especially at the 4-hourly temporal
resolution. The poor convergence oblained in  the
simulation tests, as reflected in the low values of the
efficiency statistics {Table 2), illustrates the difficulties of
applying IHACRES aione on independent data sets for
forecasting purposes. It means that the measurement noise
e(k) does not have a zero mean value when the model is
applied to such independent data outside the calibration
pericd.

Further improvement in the forecasting performance of the
proposed KF algorithm, including resolution of the bias
problem discussed above, will be possible if the algorithm
is made self adaptive, either by recursively updating some
or all the parameters of the [HACRES model, or by
introducing a single adaptive gain parameter, as suggested
in Lees er al. (1994). If sufficient, this latter approach is
likely to provide a more robust and practical real-time
solution: for example, it has been used successfully over
the last four years as part of the Solway River Purification
Board's flood warning system for the town of Dumfries, on
the River Nith in Scotland.
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